click below
click below
Normal Size Small Size show me how
Common Derivatives
Common derivatives found in AB Calculus
Term | Definition |
---|---|
Derivative Definition | (f(x+h)-f(x))/h |
Cont Checklist #1 | f(a) is defined |
Cont Checklist #2 | lim(x-->a) f(x) exists |
Cont Checklist #3 | lim(x-->a) f(x) = f(a) |
Constant Rule | f(x) = c; f'(x) = 0 |
Power Rule | f(x) = x^n; f'(x) = nx^n-1 |
Sum Rule | f(x) = u+v; f'(x) = u'+v' |
Product Rule | f(x)=u*v; f'(x)=u*v' + v*u' |
Quotient Rule | f(x)=u/v; f'(x)=(vu'+uv')/v^2 |
Sine | cos(x) |
Cosine | -sin(x) |
Tangent | sec^2(x) |
Cotangent | -csc^2(x) |
Secant | sec(x)tan(x) |
Cosecant | -csc(x)cot(x) |
Logarithmic | f(x)=logb(x); f'(x)=1/(x*ln(b)) |
Natural Log | 1/x |
Exponential | b^x*ln(b) |
Natural Exponential | e^x |
Inverse | 1/f'(x0), y0=f(x0) |
Sine Inverse | 1/(sqrt(1-x^2)) |
Cosine Inverse | -1/(sqrt(1-x^2)) |
Tangent Inverse | 1/(1+x^2) |
Cotangent Inverse | -1/(1+x^2) |
Secant Inverse | 1/(|x|sqrt(x^2-1)) |
Cosecant Inverse | -1/(|x|sqrt(x^2-1)) |