click below
click below
Normal Size Small Size show me how
Trig Functions
Trig functions
Question | Answer |
---|---|
sin^2(x)+ cos^2(x) = _ | 1 |
how to find the other pythag identities | divide sin^2x + cos^2x= 1 by sinx and cosx |
tan(pi/2 - x) = _ | cotx |
power reducing identity (sin) | sin^2 = [1 - cos(2x)]/2 |
power reducing identity (cos) | cos^2 = [1+ cos(2x)]/2 |
power reducing identity (tan) | tan^2 = [1 - cos(2x)] / [1+cos(2x)] |
sin(A+B) = | sin(A)cos(B) + cos(A)sin(B) |
cos(A+B) = | cosAcosB - sinAsinB |
tan(A+B) = | (tanA + tanB)/1-tanAtanB |
sin(A-B) = | sinAcosB - cosAsinB |
cos(A-B) = | cosAcosB + sinAsinB |
tan(A-B) = | (tanA - tanB) / (1 + tanAtanB) |
sin(2A) = | 2sinAcosA |
cos(2A) = | cos^2(A)- sin^2(A) |
tan(2A) = | (2tanA)/(1 - tan^2(A)) |
sin(1/2A) | Sqrt([1-cosA)/2] |
cos(1/2A) | Sqrt[(1+cosA)/2] |
tan(1/2A) | Sqrt[(1-cosA)/(1+cosB)] |