Save
Busy. Please wait.
Log in with Clever
or

show password
Forgot Password?

Don't have an account?  Sign up 
Sign up using Clever
or

Username is available taken
show password


Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.
Your email address is only used to allow you to reset your password. See our Privacy Policy and Terms of Service.


Already a StudyStack user? Log In

Reset Password
Enter the associated with your account, and we'll email you a link to reset your password.
focusNode
Didn't know it?
click below
 
Knew it?
click below
Don't Know
Remaining cards (0)
Know
0:00
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

  Normal Size     Small Size show me how

DEFINICION

Camino

TermDefinition
Camino secuencia alternada w = < v0, e1, v1, e2, v2, ... , vn-1, en, vn> de vertices y aristas ei = {vi-1, vi}
Camino Directo en un digrafo de v0 a vn es una secuencia alternada w = < v0, e1, v1, e2, v2, ... , vn-1, en, vn> de vertices y aristas ei = (vi-1, vi) con i = 1,...,n. Not: v0 - vn
Longitud de camino La longitud de un camino o camino directo es el n´umero de aristas que recorre el camino
Camino Cerrado Un camino o camino directo x-y es cerrado si x = y, si no, es abierto
Concatenacion de caminos La concatenaci´on de dos caminos w1 =< v0, e1, v1, e2, ..., vk−1, ek, vk > y w2 =< vk, ek+1, vk+1, ek+2, ..., vn−1, en, vn > tal que w2 empieza donde termina w1 es el camino w1 ◦ w2 =< v0, e1, v1, e2, ..., vn−1, en, vn >
Subcamino un subcamino es una subsecuencia de entradas consecutivas que comienza y termina en un vertice. un subcamino es un camino
Vertice alcanzable un vertice v es alcanzable desde un vertice u si existe un camino u-v
Conexidad un grafo es conexo si para todo par de vertices u y v hay un camino u-v
Digrafo conexo es conexo debilmente si al considerarlo no dirigido es conexo. y es fuertemente conexo si para todo par de vertices en el digrafo es mutuamente alcanzable.
Distancia es la longitud del camino mas corto de un vertice a otro. infinito si no existe camino
Reduccion de un camino dado un camino que contiene un subcamino cerrado. (borra los ciclos)
Recorrido Es un camino que no repite aristas
Camino simple Es un camino que no repite vertices
Circuito es un recorrido cerrado
Ciclo es un camino simple cerrado
Coleccion de ciclos de aristas disjuntas una descomposicion de un circuito T si los Gi son subcaminos de T y Et = UEgi y la interseccion es vacia
Recorrido euleriano recorrido que contiene todas las aristas del grafo
Circuito euleriano es un recorrido euleriano cerrado
Grafo euleriano si tiene un circuito euleriano
Camino hamiltoniano camino simple (no ciclo) en el grafo que contiene todos sus vertices
Ciclo hamiltoniano G grafo y #V >= 3 G tiene un ciclo hamiltoniano si existe un ciclo en G que contenga cada vertice
Created by: procer
Popular Math sets

 

 



Voices

Use these flashcards to help memorize information. Look at the large card and try to recall what is on the other side. Then click the card to flip it. If you knew the answer, click the green Know box. Otherwise, click the red Don't know box.

When you've placed seven or more cards in the Don't know box, click "retry" to try those cards again.

If you've accidentally put the card in the wrong box, just click on the card to take it out of the box.

You can also use your keyboard to move the cards as follows:

If you are logged in to your account, this website will remember which cards you know and don't know so that they are in the same box the next time you log in.

When you need a break, try one of the other activities listed below the flashcards like Matching, Snowman, or Hungry Bug. Although it may feel like you're playing a game, your brain is still making more connections with the information to help you out.

To see how well you know the information, try the Quiz or Test activity.

Pass complete!
"Know" box contains:
Time elapsed:
Retries:
restart all cards