click below
click below
Normal Size Small Size show me how
Calculus Terms
Term | Definition |
---|---|
lim x->0 sinx/x | 1 |
lim x->0 (1-cosx)/x | 0 |
lim x->0 tanx/x | 1 |
lim x->0 x/(1-cosx) | DNE |
sin2Θ | 2sinΘcosΘ |
lim h->0 (f(x+h)-f(x))/h | f'(x) |
d/dx cu | cu' |
d/dx u +- v | u' +- v' |
d/dx uv | u'v + uv' |
d/dx u/v | (u'v - uv')/v^2 |
d/dx c | 0 |
d/dx u^n | nu^(n-1)u' |
d/dx x | 1 |
d/dx |u| | u/|u| (u') |
d/dx lnu | u'/u |
d/dx e^u | e^(u) u' |
d/dx loga(u) | u'/(lna)u |
d/dx a^u | (lna)a^(u) u' |
d/dx sinu | (cosu) u' |
d/dx cosu | (-sinu) u' |
d/dx tanu | (sec^2u)u' |
d/dx cotu | -(csc^2u)u' |
d/dx cscu | (-cscucotu)u' |
d/dx secu | (secutanu)u' |
d/dx arcsinu | u'/√(1-u^2) |
d/dx arccosu | -u'/√(1-u^2) |
d/dx arccotu | -u'/(1+u^2) |
d/dx arctanu | u'/(1+u^2) |
d/dx arccscu | -u'/(|u|√(u^2-1)) |
d/dx arcsecu | u'/(|u|√(u^2-1)) |
∫du/u | ln|u| + C |
∫e^u du | e^u + C |
∫a^u du | a^u/(lna) + C |
∫x^u du | (x^u+1)/u+1 + C |
∫sinu du | -cosu + C |
∫cosu du | sinu + C |
∫tanu du | ln|secu| + C |
∫cotu du | ln|sinu| + C |
∫secu du | ln|secu + tanu| + C |
∫cscu du | -ln|cscu + cotu| + C |
∫secutanu du | secu + C |
∫cscucotu du | -cscu + C |
∫sec^2u du | tanu + C |
∫csc^2u du | -cotu + C |
∫1/√(a^2 - u^2) du | 1/a arcsin u/a + C |
∫du/a^2 + u^2 | 1/a arctan u/a + C |
∫1/u√(u^2 - a^2) du | 1/a arcsec |u/a| + C |
if F(x) = f(g(x)), then F'(x) = | f'(g(x))g'(x) |
loga(b) | lnb/lna |
cone volume | 1/3πr²h |
sphere surface area | 4πr² |
cylinder volume | πr²h |
sphere volume | (4/3)πr³ |
lim n->∞ (1 + 1/n)^n | e |
lim n->∞ (1+x/n)^n | e^x |
trapezoid area | 1/2h(b1+b2) |
Average value of f(x) over [a,b] | 1/(b-a) ∫f(x) dx |
∫udv | uv - ∫vdu |
∫lnx dx | xlnx - x + C |
sin^2Θ | (1-cos2Θ)/2 |
cos^2Θ | (1+cos2Θ)/2 |
tan^2Θ | (1-cos2Θ)/(1+cos2Θ) |