Save
Busy. Please wait.
Log in with Clever
or

show password
Forgot Password?

Don't have an account?  Sign up 
Sign up using Clever
or

Username is available taken
show password


Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.
Your email address is only used to allow you to reset your password. See our Privacy Policy and Terms of Service.


Already a StudyStack user? Log In

Reset Password
Enter the associated with your account, and we'll email you a link to reset your password.
focusNode
Didn't know it?
click below
 
Knew it?
click below
Don't Know
Remaining cards (0)
Know
0:00
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

  Normal Size     Small Size show me how

2Qunatit

data analysis

QuestionAnswer
useful graphs scatterplot can get a sense for the nature of the relationship
what to look for in a graph relationship between two variables where one variable causes changes to another
location where most of the data lies
spread variability of the data, how far apart or close together it is
shape symetric, skewed etc
nature of relationship existent/ non-existent strong/ weak increasing/ decreasing linear/ non-linear
outliers in scatterplots represent some unexplainable anomalies in data could reveal possible systematic structure worthy of investigation
casual relationship relationship between two variables where one variable causes changes to another
explanatory variable explains or causes the change on x-axis
response variable is changed on y-axis
useful numbers correlation and regression
formula for the correlation coefficient r= 1/(n-1) ∑▒〖((xi-x ̅)/sx〗)((yi-y ̅)/sy)
xi or yi axis values of corresponding letter
xbar or ybar mean of axis values of corresponding letter
sx or sy standard deviation of axis values of corresponding latter
properties of r close to 1 = strong positive linear relatoinship close to -1 = strong negative linear relationship close to 0 = weak or non-existent linear relationsip
cautions about the use of r only useful for describing linear relationships sensitive to outliers
regression models general linear relationships between variables focus negative = decrease
what regression modelling does describes behaviour of response variable (the variable of interest) in terms of a collection predictors (related variables ie. explanatory variable(s))
a linear framework is used to look at? the relationship between the response and the regressors formula: Y = α + βx Where α is the intercept and β is the slope
ideal model for linear framework in terms of responses and regressors one unique response to one given regressor
real world model for linear framework in terms of responses and regressors must approximate
statistical model relates response to physical model predictions allows for better predictions and quantification of uncertainty concerning the response to make decisions
what does regression analysis do? finds the best relationship between responses and regressors for a particular class of models
experimenter controls predictors, why? may be important for making inferences about the effect of predictors on response
course assumption predictors are controlled in an experiment or at least accurately measured
define a good statistical model fit, predictive performance, parsimony interpretability
qualitative description of model response = signal + noise Y = α + βx + ǫ ǫ = noise
define signal a small number of unknown parameters variation in response explained in terms of predictors it is the systematic part of the model
define noise residual variation unexplained in the systematic part of the model can be described in terms of unknown parameters
what does a good statistical model do to possibly large and complex data reduces it to a small number of parameters
a model will fit well if the systematic part of the model describes much of the variation in the response (low noise) large number of parameters may be required to do this
define parsimony: smaller number of parameters = grater reduction of data, more useful for making a decision
there is a cycle between what? tentative model formulation, estimation of parameters and model criticism
a good model will manage balance between goodness of fit and complexity provide reduction useful data
model response variable in terms of a single predictor yn = values of the response variable
Created by: Nymphette
Popular Math sets

 

 



Voices

Use these flashcards to help memorize information. Look at the large card and try to recall what is on the other side. Then click the card to flip it. If you knew the answer, click the green Know box. Otherwise, click the red Don't know box.

When you've placed seven or more cards in the Don't know box, click "retry" to try those cards again.

If you've accidentally put the card in the wrong box, just click on the card to take it out of the box.

You can also use your keyboard to move the cards as follows:

If you are logged in to your account, this website will remember which cards you know and don't know so that they are in the same box the next time you log in.

When you need a break, try one of the other activities listed below the flashcards like Matching, Snowman, or Hungry Bug. Although it may feel like you're playing a game, your brain is still making more connections with the information to help you out.

To see how well you know the information, try the Quiz or Test activity.

Pass complete!
"Know" box contains:
Time elapsed:
Retries:
restart all cards