Calculus 2, Unit 1 Word Scramble
|
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.
Normal Size Small Size show me how
Normal Size Small Size show me how
| Term | Definition |
| Derivative of any constant | 0 |
| Derivative of x | 1 |
| Derivative of x^n | nx^(n-1) |
| Derivative of e^x | e^x |
| Derivative of n^x | (n^x)(lnx) |
| Derivative of sinx | cosx |
| Derivative of cosx | -sinx |
| Derivative of tanx | sec^2x |
| Derivative of cotx | -csc^2x |
| Derivative of secx | secxtanx |
| Derivative of cscx | -cscxcotx |
| Derivative of arcsinx, or the inverse of sinx | 1/√(1-x^2) |
| Derivative of arccosx, or the inverse of cosx | -1/√(1-x^2) |
| Derivative of arctanx, or the inverse of tanx | 1/(1+x^2) |
| Derivative of arccotx, or the inverse of cotx | -1/(1+x^2) |
| Derivative of arcsecx, or the inverse of secx | 1/(x√(x^2-1)) |
| Derivative of arccscx, or the inverse of cscx | -1/(x√(x^2-1)) |
| Integral of 0dx | C |
| Integral of 1dx | x + C |
| Integral of x^ndx | x^n+1/n+1 + C |
| Integral of e^xdx | e^x |
| Integral of 1/xdx | lnx + C |
| Integral of n^x | n^x/lnx |
| Integral of cosxdx | sinx + C |
| Integral of sinxdx | -cosx + C |
| Integral of sec^2xdx | tanx + C |
| Integral of csc^2xdx | -cotx + C |
| Integral of tanxsecxdx | secx + C |
| Integral of cotxcscxdx | -cscx + C |
| Integral of 1/√1-x^2dx | arcsinx + C |
| Integral of -1/√1-x^2dx | arccotx + C |
| Integral of 1/x√x^2-1dx | arcsecx + C |
| Integral of -1/x√x^2-1dx | arccscx + C |
| Double Angle Formula of sin2Θ | 2sinΘcosΘ |
| Double Angle Formula of cos2Θ | cos^2Θ-sin^2Θ = 2cos^2Θ-1 = 1 - 2sin^2Θ |
| Double Angle Formula of tan2Θ | 2tanΘ/1 - tanΘ |
| Half Angle Formula of sin^2Θ | 1-cos2Θ/2 |
| Half Angle Formula of sinΘ/2 | +-√1-cosΘ/2 |
| Half Angle Formula of cos^2Θ | (1+cos2Θ)/2 |
| Half Angle Formula of cosΘ/2 | +-√1+cosΘ/2 |
| Half Angle Formula of tanΘ/2 | +-√1-cosΘ/1+cosΘ or sinx/1+cosx or 1-cosx/sinx |
| Substitution for √a^2-x^2 | x = asinΘ |
| Derivative Substitution for √a^2-x^2 | dx = a cosΘdΘ |
| Trig Identity for √a^2-x^2 | cos^2Θ = 1 - sin^2Θ |
| Result for √a^2-x^2 | acosΘ |
| Substitution for √a^2+x^2 | x = atanΘ |
| Derivative Substitution for √a^2+x^2 | dx = asec^2ΘdΘ |
| Trig Identity for √a^2+x^2 | 1 + tan^2Θ = sec^2Θ |
| Result for √a^2+x^2 | asecΘ |
| Substitution for √x^2-a^2 | x = a secΘ |
| Derivative substitution for √x^2-a^2 | dx = asecΘtanΘdΘ |
| Trig Identity for √x^2-a^2 | tan^2Θ = sec^2Θ-1 |
| Result for √x^2-a^2 | atanΘ |
| logb(M * N) | logbM + logbN |
| logbM + logbN | logb(M*N) |
| logb(M/N) | logbM-logbN |
| logbM-logbN | logb(M/N) |
| logb(M^k) | klogbM |
| klogbM | logb(M^k) |
| logb(1) | 0 |
| logb(b) | 1 |
| logb(b^k) | k |
| b^logb(k) | k |
| ∫udv | uv - ∫vdu |
| sin(Θ) on a triangle | o/h |
| cos(Θ) on a triangle | a/h |
| tan(Θ) on a triangle | o/a |
| csc(Θ) | h/0 |
| sec(Θ) | h/a |
| cot(Θ) | a/o |
| Reciprocal Identity for sinΘ | 1/cscΘ |
| Reciprocal Identity for cosΘ | 1/secΘ |
| Reciprocal Identity for tanΘ | 1/cotΘ |
| Reciprocal Identity for cscΘ | 1/sinΘ |
| Reciprocal Identity for secΘ | 1/cosΘ |
| Reciprocal Identity for cotΘ | 1/tanΘ |
| Pythagorean Trig Identity 1a | sin^2Θ + cos^2Θ = 1 |
| Pythagorean Trig Identity 1b | cos^2Θ = 1 - sin^2 |
| Pythagorean Trig Identity 1c | sin^2Θ = 1 - cos^2Θ |
| Pythagorean Trig Identity 2a | 1 + tan^2Θ = sec^2Θ |
| Pythagorean Trig Identity 2b | tan^2Θ = sec^2Θ - 1 |
| Pythagorean Trig Identity 2c | 1 = sec^2Θ - tan^2Θ |
| Pythagorean Trig Identity 3a | 1 + cot^2Θ = csc^2Θ |
| Pythagorean Trig Identity 3b | cot^2Θ = csc^2Θ - 1 |
| Pythagorean Trig Identity 3c | 1 = csc^2Θ - cot^2Θ |
| Inverse sin(arcsin) | Θ = sin^-1(o/h) |
| Inverse cosine (arccos) | Θ = cos^-1(a/h) |
| Inverse tangent (arctan) | Θ = tan^-1(o/a) |
| (x^a) * (x ^b) | x^a+b |
| x^a+b | (x^a) * (x^b) |
| (x^a)/(x^b) | x^a-b |
| x^a-b | (x^a)/(x^b) |
| (x^a)^b | x^ab |
| x^ab | (x^a)^b |
| (xy)^a | (x^a)(y^a) |
| (x^a)(y^a) | (xy)^a |
| (x/y)^a | (x^a)/(y^a) |
| x^-a | 1/x^a |
| x^0 | 1 |
| ln(e) | 1 |
Created by:
mozomari
Popular Math sets