click below
click below
Normal Size Small Size show me how
Calculus 2, Unit 1
Integrals, derivatives, tables, etc.
Term | Definition |
---|---|
Derivative of any constant | 0 |
Derivative of x | 1 |
Derivative of x^n | nx^(n-1) |
Derivative of e^x | e^x |
Derivative of n^x | (n^x)(lnx) |
Derivative of sinx | cosx |
Derivative of cosx | -sinx |
Derivative of tanx | sec^2x |
Derivative of cotx | -csc^2x |
Derivative of secx | secxtanx |
Derivative of cscx | -cscxcotx |
Derivative of arcsinx, or the inverse of sinx | 1/√(1-x^2) |
Derivative of arccosx, or the inverse of cosx | -1/√(1-x^2) |
Derivative of arctanx, or the inverse of tanx | 1/(1+x^2) |
Derivative of arccotx, or the inverse of cotx | -1/(1+x^2) |
Derivative of arcsecx, or the inverse of secx | 1/(x√(x^2-1)) |
Derivative of arccscx, or the inverse of cscx | -1/(x√(x^2-1)) |
Integral of 0dx | C |
Integral of 1dx | x + C |
Integral of x^ndx | x^n+1/n+1 + C |
Integral of e^xdx | e^x |
Integral of 1/xdx | lnx + C |
Integral of n^x | n^x/lnx |
Integral of cosxdx | sinx + C |
Integral of sinxdx | -cosx + C |
Integral of sec^2xdx | tanx + C |
Integral of csc^2xdx | -cotx + C |
Integral of tanxsecxdx | secx + C |
Integral of cotxcscxdx | -cscx + C |
Integral of 1/√1-x^2dx | arcsinx + C |
Integral of -1/√1-x^2dx | arccotx + C |
Integral of 1/x√x^2-1dx | arcsecx + C |
Integral of -1/x√x^2-1dx | arccscx + C |
Double Angle Formula of sin2Θ | 2sinΘcosΘ |
Double Angle Formula of cos2Θ | cos^2Θ-sin^2Θ = 2cos^2Θ-1 = 1 - 2sin^2Θ |
Double Angle Formula of tan2Θ | 2tanΘ/1 - tanΘ |
Half Angle Formula of sin^2Θ | 1-cos2Θ/2 |
Half Angle Formula of sinΘ/2 | +-√1-cosΘ/2 |
Half Angle Formula of cos^2Θ | (1+cos2Θ)/2 |
Half Angle Formula of cosΘ/2 | +-√1+cosΘ/2 |
Half Angle Formula of tanΘ/2 | +-√1-cosΘ/1+cosΘ or sinx/1+cosx or 1-cosx/sinx |
Substitution for √a^2-x^2 | x = asinΘ |
Derivative Substitution for √a^2-x^2 | dx = a cosΘdΘ |
Trig Identity for √a^2-x^2 | cos^2Θ = 1 - sin^2Θ |
Result for √a^2-x^2 | acosΘ |
Substitution for √a^2+x^2 | x = atanΘ |
Derivative Substitution for √a^2+x^2 | dx = asec^2ΘdΘ |
Trig Identity for √a^2+x^2 | 1 + tan^2Θ = sec^2Θ |
Result for √a^2+x^2 | asecΘ |
Substitution for √x^2-a^2 | x = a secΘ |
Derivative substitution for √x^2-a^2 | dx = asecΘtanΘdΘ |
Trig Identity for √x^2-a^2 | tan^2Θ = sec^2Θ-1 |
Result for √x^2-a^2 | atanΘ |
logb(M * N) | logbM + logbN |
logbM + logbN | logb(M*N) |
logb(M/N) | logbM-logbN |
logbM-logbN | logb(M/N) |
logb(M^k) | klogbM |
klogbM | logb(M^k) |
logb(1) | 0 |
logb(b) | 1 |
logb(b^k) | k |
b^logb(k) | k |
∫udv | uv - ∫vdu |
sin(Θ) on a triangle | o/h |
cos(Θ) on a triangle | a/h |
tan(Θ) on a triangle | o/a |
csc(Θ) | h/0 |
sec(Θ) | h/a |
cot(Θ) | a/o |
Reciprocal Identity for sinΘ | 1/cscΘ |
Reciprocal Identity for cosΘ | 1/secΘ |
Reciprocal Identity for tanΘ | 1/cotΘ |
Reciprocal Identity for cscΘ | 1/sinΘ |
Reciprocal Identity for secΘ | 1/cosΘ |
Reciprocal Identity for cotΘ | 1/tanΘ |
Pythagorean Trig Identity 1a | sin^2Θ + cos^2Θ = 1 |
Pythagorean Trig Identity 1b | cos^2Θ = 1 - sin^2 |
Pythagorean Trig Identity 1c | sin^2Θ = 1 - cos^2Θ |
Pythagorean Trig Identity 2a | 1 + tan^2Θ = sec^2Θ |
Pythagorean Trig Identity 2b | tan^2Θ = sec^2Θ - 1 |
Pythagorean Trig Identity 2c | 1 = sec^2Θ - tan^2Θ |
Pythagorean Trig Identity 3a | 1 + cot^2Θ = csc^2Θ |
Pythagorean Trig Identity 3b | cot^2Θ = csc^2Θ - 1 |
Pythagorean Trig Identity 3c | 1 = csc^2Θ - cot^2Θ |
Inverse sin(arcsin) | Θ = sin^-1(o/h) |
Inverse cosine (arccos) | Θ = cos^-1(a/h) |
Inverse tangent (arctan) | Θ = tan^-1(o/a) |
(x^a) * (x ^b) | x^a+b |
x^a+b | (x^a) * (x^b) |
(x^a)/(x^b) | x^a-b |
x^a-b | (x^a)/(x^b) |
(x^a)^b | x^ab |
x^ab | (x^a)^b |
(xy)^a | (x^a)(y^a) |
(x^a)(y^a) | (xy)^a |
(x/y)^a | (x^a)/(y^a) |
x^-a | 1/x^a |
x^0 | 1 |
ln(e) | 1 |