click below
click below
Normal Size Small Size show me how
Convergence Tests
AP Calc BC
Question | Answer |
---|---|
P-Series Test | An converge P > 1 |
P-Series Test | An diverge P ≤ 1 |
Geometric Series Test | An converge |r| < 1 |
Geometric Series Test | An diverge r ≥ 1 |
nth term Test | Diverges when limit →∞ ≠ 0 |
nth Term Test | Inconclusive when limit →∞ = 0 |
Conditionl Convergence (Alternating is the conditions) | Does NOT convegre absolutely, Converges Alternating |
Integral Test Conditions | 1. Positive 2. Decreasing 3. Continuous |
Integral Test | Converges when limit →∞ = converges |
Integral Test | Diverges when limit →∞ = diverges (0, ∞, -∞) |
Limit Comparision Test | C = Lim →∞ of |An * 1/Bn| |
Limit Comparison Test Conditions | C = Positive & Finit (NOT ∞ /-∞ ) |
Limit Comparison Test Conditions | Both functions either converge or diverge depending on the convergence of An or Bn |
Comparison Test | Converges when a greater function converges |
Comparision Test | Diverges when a lesser function converges |
Ratio Test | L = Lim →∞ of |An +1 / An| |
Ratio Test | Diverges when L > 1 |
Ratio Test | Converges when L < 1 |
Ratio Test | Inconclusive when L = 1 |
Alternating Series Test Conditions | 1. Decreasing 2. Limit of all terms = 0 3. Alternating (implied by -1) |