click below
click below
Normal Size Small Size show me how
med chem2-exam 1
Medicinal Chemistry & Pharmacology 2 - exam 1
Question | Answer |
---|---|
general effect of sympathetic drugs on HR & BP | -increase in HR -increase in BP |
BP equation | BP = CO * R *CO = Cardiac Output *R = arterial Resistance *CO is determined by stroke volume & HR |
Renin-Angiotensin-Aldosterone System (RAAS) pathway and how it increases BP | angiotensinogen -(renin)-> angiotensin 1 -(ACE)-> angiotensin 2 -> AT2 receptors -> *vasoconstriction (inc. R) *or aldosterone -> inc. NaCl abs. = inc. water retention = inc. CO *AT2 is the active compound |
ACE inhibitors and ARBs | -ACE inhibitors are structurally similar to AT1 and compete for the enzyme ACE -ARBs are structurally similar to AT2 and compete for AT2 receptors -leads to dec. BP by dec. Na+ & water retention -SE is inc. in K+ |
effects of ACEIs & ARBs on: 1) Na+ 2) K+ 3) BP 4) Cl- | 1) decreases 2) increases 3) decreases, could lead to hypotension 4) (does not increase) |
therapeutic uses of ACEIs | -treatment of HTN, HF, left ventricular dysfunction (LVD) -reduction of the risk of MI, stroke, and death from cardiovascular causes |
3 chemical classes of ACEIs | -sulfhydryl-containing inhibitors -phosphonate-containing inhibitors -dicarboxylate-containing inhibitors |
sulfhydryl-containing ACEIs | captopril |
phosphonate-containing ACEIs | fosinopril |
dicarboxylate-containing ACEIs | benazepril, enalapril, lisinopril, perindopril, quinapril, ramipril, trandolapril, moexipril |
main structural feature of all ACEIs | Zn-binding pocket |
binding interactions of ACEIs | -ionic bond with Zn on ACE -double bonded O of amide group can form H-bonds with ACE -side chains contribute to overall binding affinity (hydrophobic/Van der Waals interactions) |
captopril (not including SE) | -first ACEI -sulfhydryl/mercapto group + proline (AA - active transport) *substituting proline for another AA -> less potency -mercapto group -> excellent inhib. activity, faster metabolism (shorter t_1/2) -TID |
SE of captopril | -skin rashes -taste disturbances (dysgeusia) |
reason captopril is desired in patients with liver disease | captopril does not require activation by liver enzymes |
enalaprilat | - -SH group of captopril replaced with -COOH -proline is still the AA for good activity - ~10x more potent than captopril -excellent IV activity but very poor oral bioavailability |
enalapril | -ester prodrug of enalaprilat (2 carboxylate groups & secondary amine are responsible for low lipophilicity/oral bioavailability) -once abosorbed, bioactivation by hepatic esterases leads to enalaprilat formation -drawback in pts. w/hepatic problems |
lisinopril (not including bioavailability) | -also has lysine to further inc. affinity to ACE -not a prodrug, so does not require hepatic enzymes for activation (advantage) -good tissue penetration -eliminated by kidneys |
lisinopril bioavailability | -most hydrophilic ACEI -presence of NH2 & COOH groups make it a double zwitterion -> neutralization -> absorbs readily in gut -active transport across intestinal epithelium -good oral bioavailability, long t_1/2 -QD |
locations of ACE | -tissue & plasma -affecting tissue ACE has better, more consistent effect on BP over time |
other ACEIs that are ester prodrugs & associated advantages and disadvantages | -benazepril & ramipril -higher potency than lisinopril *these two have rings that are bio-isosteric replacements of proline -advantage: better bioavailability -disadvantage: requires hepatic activation = bad in hepatic disease |
Gupta's tricky use of the words "equivalent" and "similar" | -apparently, according to his superior intellect, "similar" means = number of mg's while "equivalent" means doses that produce similar therapeutic effect -ex: at similar doses, ramipril has inc. potency compared to lisinopril |
fosinopril | -prodrug -phosphate + proline derivative -phosphinic acid interacts with Zn -ionic, H, & hydrophobic bonds similar to enalapril -most lipophilic ACEI |
advantage of fosinopril | -doesn't depend on kidneys for elimination -if kidney function is compromised, more can be removed by liver **do not need to adjust dose when kidney function is compromised |
N-ring of ACEIs | -must have carboxylic acid group -large hydrophobic rings increases potency (ex. benazepril & ramipril) and alters PK parameters |
duration of action of ACEIs | -mostly 24 hours (QD/BID) -captopril = 6 - 12 hours (TID) -enalaprilat = 6 hours |
metabolism of ACEIs | -captopril: forms disulfide dimer or a captopril-cysteine disulfide -lisinopril & enalaprilat: no metabolism -rest are all prodrugs -further metabolic transformation: glucuronidation |
receptor type that ARBs compete for | AT2 receptor type 1 |
ARBs | losartan, irbesartan, olmesartan, candesartan, valsartan, telmisartan, eprosartan, azilsartan kamedoxomil |
groups important for activity & binding efficiency of ARBs | -imidazole ring forms H-bonds -aromatic group/n-butyl chain forms hydrophobic interactioins -ionizable (R1) group binds with receptor via dipole interactions -R2 group is acidic group (absorbs well in stomach) |
structural similarities between ARBs & AT2 | -ionizable (R1) group -> C-terminal carboxylate -imidazole ring -> imidazole side chain of the His_6 residue - n-butyl -> hydrocarbon side chain of the Ile_5 residue -tetrazole ring (R2) must be in ortho position for optimal activity |
main structural difference of valsartan | isosteric replacement of imidazole ring |
ARB prodrugs | -candesartan cilexitil -olmesartan medoxomil |
ARB affinity for AT2 type I receptor (greatest to least) | -azilsartan -candesartan/olmesartan -irbesartan/eprosartan -telmisartan/valsartan -losartan |
ARBs whose clearance is not affected by hepatic insufficiency | -candesartan -olmesartan -irbesartan -azilsartan |
ARB protein binding | highly protein bound (>90%) to albumin |
metabolism of losartan | -oxidized by CYP2C9 & 3A4 to produce EXP-3174 -EXP-3174 is 10 - 40x more potent than losartan |
metabolism of other ARBs (besides losartan) | irbe-, telmi-, & epro- sartan are all metabolized to inactive glucuronide conjugates |